首页

AD联系:507867812

太阳城申博注册

时间:2019-12-12 07:16:33 作者:太阳城申请18彩金 浏览量:24759

太阳城申博注册  为了提高生物质颗粒回转燃烧器热效率,使燃烧更充分,减少烟尘量的生成,生物质颗粒回转燃烧器采用回转燃烧室。此外,还采用螺旋进料装置控制进料量,保证颗粒燃料充分燃烧,从而控制严重结渣。

  生物质回转燃烧器在不同引风速度下的气相压力分布如图4所示。仿真结果表明:在生物质旋流燃烧器整体压力最大区域主要分布在风机引风处到回转燃烧室二次风口之间,其他区域压力值分布较为均匀;气体进入生物质回转燃烧室上的二次风口后,压力值逐渐减小,在回转燃烧室内部压力基本保持一致。

,见下图

  2理论模型和计算方法

,见下图

,如下图

如下图

  为了模拟绝热燃烧过程,壁面设为绝热壁面,没有热量和质量流量通过,壁面为无滑移边界条件,近壁区采用标准壁面函数。离散格式中压力插补格式采用PRESTO格式,对流项采用QUICK格式。设置收敛为平均残差小于10-5,并且当进风口、出风口几个预设监测点速度、压力都趋于稳定时,可认为收敛并停止求解。

,如下图

  在进行数值仿真计算前,采用Pro/E软件建立生物质颗粒回转燃烧器的三维模型,如图2所示。

,见图

太阳城申博注册  摘要:以新型生物质颗粒回转燃烧器为研究对象,采用Pro/E软件对生物质颗粒回转燃烧器内流体进行几何建模,并用Gambit软件对模型应用非结构化网格生成技术划分网格,并进行有限元前处理。在采用k-ε湍流模型的基础上,应用计算流体力学软件Fluent模拟稳定工况下回转燃烧器内流体的流动特性,分析进气速度对回转燃烧器内的压力分布、速度分布以及湍动能分布的影响。结果表明:燃烧器内部的气体压力、速度和湍动能随风机引风速度的增大逐渐增大,风机出口到回转燃烧室之间的气体压力、速度和湍动能较大,在二次风口处达到最大值,回转燃烧室内气体的压力、速度和湍动能分布较为均匀。

  [4]DEMIRABAS A.Combustion characteristics of different biomass fuel[J].Progress in Energy and Combustion Science,2004,30:219-230.

  从图4可以看出:燃烧器内部的整体压力随风机引风速度的增大逐渐增大。当风机引风风速为25m·s-1时,二次风口的最大压力为541.0Pa;当风机引风风速为35m·s-1时,二次风口的最大压力为1059.5Pa;当风机引风风速为45m·s-1时,二次风口的压力增大为1750.7Pa。

  燃烧器的湍动能分布云图如图6所示。湍动能是与流体速度相关的参数,它是脉动动能而非平均流动能。

  [9]CUI K,LIU B,WU Y X,et al.Numerical simulation of oxy-coal combustion for a swirl burner with EDC mo-del[J].Chinese Journal of Chemical Engineering,2014,22(2):193-201.

  2理论模型和计算方法

  反映湍流脉动量对流场影响的湍流动能方程和湍流应力方程可通过k-ε方程[12]得到:

贾国海,李立君,高自成,李际平,陈喜龙

  摘要:以新型生物质颗粒回转燃烧器为研究对象,采用Pro/E软件对生物质颗粒回转燃烧器内流体进行几何建模,并用Gambit软件对模型应用非结构化网格生成技术划分网格,并进行有限元前处理。在采用k-ε湍流模型的基础上,应用计算流体力学软件Fluent模拟稳定工况下回转燃烧器内流体的流动特性,分析进气速度对回转燃烧器内的压力分布、速度分布以及湍动能分布的影响。结果表明:燃烧器内部的气体压力、速度和湍动能随风机引风速度的增大逐渐增大,风机出口到回转燃烧室之间的气体压力、速度和湍动能较大,在二次风口处达到最大值,回转燃烧室内气体的压力、速度和湍动能分布较为均匀。

太阳城申博注册

  在进行数值仿真计算前,采用Pro/E软件建立生物质颗粒回转燃烧器的三维模型,如图2所示。

  2理论模型和计算方法

  生物质回转燃烧器在不同引风速度下的气相压力分布如图4所示。仿真结果表明:在生物质旋流燃烧器整体压力最大区域主要分布在风机引风处到回转燃烧室二次风口之间,其他区域压力值分布较为均匀;气体进入生物质回转燃烧室上的二次风口后,压力值逐渐减小,在回转燃烧室内部压力基本保持一致。

  1燃烧器结构

1.  文献[10]对一种具有空气分级装置的小型生物质燃烧系统进行了CFD仿真分析,计算结果表明该装置可以在较低的空气比下实现生物质的完全燃烧。文献[11]对一种生物质颗粒气化炉的燃烧效率和污染物排放特性进行了分析,得出在控制好空气混合比的情况下可大大减少污染物排放并提高燃烧效率。文献[12]对固定床锅炉中的生物质燃烧特性进行了数值模拟和实验测试对比分析,得到了固定床中固相和锅炉炉中气相的主要变化曲线。文献[13]采用计算流体动力学(CFD)软件对生物质气化炉进行建模,并对不同生物质颗粒的气化特性进行了仿真与试验研究。

  3.3燃烧器内湍动能分布

  4结论

  从图6可以看出:湍动能变化较大的区域主要集中在风机引风到对应的二次风口之间,经过二次风口处的湍动能达到最大值,在其他的区域,湍动能值较小,基本保持稳定不变;随着风机引风速度的增大,湍动能也相应地增大:当风机引风风速为25m·s-1时,二次风口的最大湍动能为77.58m2·s-2;当风机引风风速为35m·s-1时,二次风口的最大湍动能为152.04m2·s-2;当风机引风风速为45m·s-1时,二次风口的湍动能增大为251.32m2·s-2。湍流具有扩散能力,能够耗散气体的保势动能,形成时而膨胀时而压缩的气体介质,也会引起气体的回流和涡流,阻碍气体的流动,增加各部分的静压力,产生压力损失。比较图4,6可以看出,湍动能大的地方压力变化也较大。

  3.1燃烧器内压力分布

新型生物质颗粒回转燃烧器流动特性仿真分析  [7]刘伟,陈琪.煤掺烧生物质旋流燃烧器流场的数值模拟[J].工业加热,2011,40(5):24-27.

  在进行数值仿真计算前,采用Pro/E软件建立生物质颗粒回转燃烧器的三维模型,如图2所示。

2.。

3.  从图6可以看出:湍动能变化较大的区域主要集中在风机引风到对应的二次风口之间,经过二次风口处的湍动能达到最大值,在其他的区域,湍动能值较小,基本保持稳定不变;随着风机引风速度的增大,湍动能也相应地增大:当风机引风风速为25m·s-1时,二次风口的最大湍动能为77.58m2·s-2;当风机引风风速为35m·s-1时,二次风口的最大湍动能为152.04m2·s-2;当风机引风风速为45m·s-1时,二次风口的湍动能增大为251.32m2·s-2。湍流具有扩散能力,能够耗散气体的保势动能,形成时而膨胀时而压缩的气体介质,也会引起气体的回流和涡流,阻碍气体的流动,增加各部分的静压力,产生压力损失。比较图4,6可以看出,湍动能大的地方压力变化也较大。

  生物质回转燃烧器在不同引风速度下的气相压力分布如图4所示。仿真结果表明:在生物质旋流燃烧器整体压力最大区域主要分布在风机引风处到回转燃烧室二次风口之间,其他区域压力值分布较为均匀;气体进入生物质回转燃烧室上的二次风口后,压力值逐渐减小,在回转燃烧室内部压力基本保持一致。

  4结论

4.

  [6]陈喜龙,李际平,王义强,等.木质颗粒燃料锅炉替代燃油燃气锅炉效益分析[J].农业工程学报,2011,27(增刊2):131-134.

  根据式(7)-(9)得到不同引风速度下的引风口和燃料入口的等效水力直径、雷诺数和湍流强度,如表1所示。

  以Fluent软件为基础,采用k-ε湍流模型模拟稳定工况下该型生物质回转燃烧器内流体的流动特性,入口边界采用速度入口边界条件,燃烧器出口处边界条件选择出口压力边界,依照实际工作要求,设置为大气压力。

  2理论模型和计算方法

  [11]CHEN Y C,SHEN G F,SU S,et al.Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves:comparison of international and Chinese water boiling test protocols[J].Energy for Sus-tainable Development,2016,32:22-30.

。太阳城申博注册

展开全文
相关文章
太阳城管理网

  根据式(7)-(9)得到不同引风速度下的引风口和燃料入口的等效水力直径、雷诺数和湍流强度,如表1所示。

环亚公司

  4结论

....

太阳城彩票客户端

  3)燃烧器湍动能变化较大的区域主要集中在风机引风到对应的二次风口之间,在其他的区域,湍动能较小,基本保持稳定不变。随着风机引风速度的增大,湍动能也相应增大,燃烧器的壁面和回转燃烧室上的小孔对流体的限制和扰动是其内部产生湍流的主要原因。

....

太阳城现金网818

....

太阳城AG计划

....

相关资讯
热门资讯